This study concerns the process by which agents select control laws. Participants adjusted their walking speed in a virtual environment in order to intercept approaching targets. Successful interception can be achieved with a constant bearing angle (CBA) strategy that relies on prospective information, or with a modified required velocity (MRV) strategy, which also includes predictive information. We manipulated the curvature of the target paths and the display condition of these paths. The curvature manipulation had large effects on the walking kinematics when the target paths were not displayed (informationally poor display). In contrast, the walking kinematics were less affected by the curvature manipulation when the target paths were displayed (informationally rich display). This indicates that participants used an MRV strategy in the informationally rich display and a CBA strategy in the informationally poor display. Quantitative fits of the respective models confirm this information-driven switch between the use of a strategy that relies on prospective information and a strategy that includes predictive information. We conclude that agents are able of taking advantage of available information by selecting a suitable control law.