Bio-inspired guidance principles involving no reference frame are presented here and were implemented in a rotorcraft called Beerotor, which was equipped with a minimalistic panoramic optic flow sensor and no accelerometer, no inertial measurement unit (IMU) [9], as in flying insects (Dipterian only uses rotation rates). In the present paper, the vertical optic flow was used as an additional cue whereas the previously published Beerotor II's visuo-motor system only used translational op-tic flow cues [9]. To test these guidance principles, we built a tethered tandem rotorcraft called Beerotor (80g), which flies along a high-roofed tunnel. The aerial robot adjusts its pitch and hence its speed, hugs the ground and lands safely without any need for an inertial reference frame. The rotorcraft's altitude and forward speed are adjusted via several op-tic flow feedback loops piloting respectively the lift and the pitch angle on the basis of the common-mode and differential rotor speeds, respectively as well as an active system of reorientation of a quasi-panoramic eye which constantly realigns its gaze, keeping it parallel to the nearest surface followed. Safe automatic terrain following and landing were obtained with the active eye-reorientation system over rugged terrain, without any need for an inertial reference frame.