The interrelations between inflammation and regeneration are of particular significance within the dental pulp tissue inextensible environment. Recent data have demonstrated the pulp capacity to respond to insults by initiating an inflammatory reaction and dentin pulp regeneration. Different study models have been developed in vitro and in vivo to investigate the initial steps of pulp inflammation and regeneration. These include endothelial cell interaction with inflammatory cells, stem cell interaction with pulp fibroblasts, migration chambers to study cell recruitment and entire human tooth culture model. Using these models, the pulp has been shown to possess an inherent anti-inflammatory potential and a high regeneration capacity in all teeth and at all ages. The same models were used to investigate the effects of tricalcium silicate-based pulp capping materials, which were found to modulate the pulp anti-inflammatory potential and regeneration capacity. Among these, resin-containing materials such as TheraCal ® shift the pulp response towards the inflamma-tory reaction while altering the regeneration process. On the opposite, resin-free materials such as Biodentine TM have an anti-inflammatory potential and induce the pulp regeneration capacity. This knowledge contradicts the new tendency of developing resin-based calcium silicate hybrid materials for direct pulp capping. Additionally, it would allow investigating the modulatory effects of newly released pulp capping materials on the balance between tissue inflammation and regeneration. It would also set the basis for developing future capping materials targeting these processes.