Detection and prediction of driver drowsiness using artificial neural network models

  • Jacobé de Naurois Charlotte
  • Bourdin Christophe
  • Stratulat Anca Melania
  • Diaz Emmanuelle
  • Vercher Jean-Louis

  • Drowsiness
  • Prediction
  • Artificial neural network
  • Physiological measurement
  • Driving performance and activity
  • Behavioral measurement

ART

Not just detecting but also predicting impairment of a car driver's operational state is a challenge. This study aims to determine whether the standard sources of information used to detect drowsiness can also be used to predict when a given drowsiness level will be reached. Moreover, we explore whether adding data such as driving time and participant information improves the accuracy of detection and prediction of drowsiness. Twenty-one participants drove a car simulator for 110 min under conditions optimized to induce drowsiness. We measured physiological and behavioral indicators such as heart rate and variability, respiration rate, head and eyelid movements (blink duration, frequency and PERCLOS) and recorded driving behavior such as time-to-lane-crossing, speed, steering wheel angle, position on the lane. Different combinations of this information were tested against the real state of the driver, namely the ground truth, as defined from video recordings via the Trained Observer Rating. Two models using artificial neural networks were developed, one to detect the degree of drowsiness every minute, and the other to predict every minute the time required to reach a particular drowsiness level (moderately drowsy). The best performance in both detection and prediction is obtained with behavioral indicators and additional information. The model can detect the drowsiness level with a mean square error of 0.22 and can predict when a given drowsiness level will be reached with a mean square error of 4.18 min. This study shows that, on a controlled and very monotonous environment conducive to drowsiness in a driving simulator, the dynamics of driver impairment can be predicted.