Taking Inspiration from Flying Insects to Navigate inside Buildings

  • Serres Julien

  • Bioinspired robotics
  • Bionics
  • Optic flow
  • Sense and avoid system
  • Micro air vehicle MAV
  • Unmanned aerial vehicle UAV

COUV

These days, flying insects are seen as genuinely agile micro air vehicles fitted with smart sensors and also parsimonious in their use of brain resources. They are able to visually navigate in unpredictable and GPS-denied environments. Understanding how such tiny animals work would help engineers to figure out different issues relating to drone miniaturization and navigation inside buildings. To turn a drone of ~1 kg into a robot, miniaturized conventional avionics can be employed; however, this results in a loss of their flight autonomy. On the other hand, to turn a drone of a mass between ~1 g (or less) and ~500 g into a robot requires an innovative approach taking inspiration from flying insects both with regard to their flapping wing propulsion system and their sensory system based mainly on motion vision in order to avoid obstacles in three dimensions or to navigate on the basis of visual cues. This chapter will provide a snapshot of the current state of the art in the field of bioinspired optic flow sensors and optic flow-based direct feedback loops applied to micro air vehicles flying inside buildings.