Ultrasonic friction reduction is one potential technology for bringing tangibility to flat touchscreens. We previously established that this approach can be used to create an artificial sensation of pressing a mechanical switch by varying the coefficient of friction, which depends on the force applied by the user. This sensation proves effective majority of, but a non-negligible fraction reported feeling only weak sensations or none at all. In the present study, we examined the factors possibly involved in producing a vivid perception of a stimulus by measuring the mechanical impedance of the fingertip as an index to the frictional behavior, and performing psychophysical experiments. Subjects who experienced weaker sensations were found to have a weaker susceptibility to friction modulation, which may in turn be attributable to either a larger or a smaller than average/normal impedance; whereas those with a mechanical impedance of around 55 N.s/m clearly perceived the ultrasonic switch. Measuring and factoring the users impedance in real time could therefore provide a useful means of improving the rendering of ultrasonic surface haptic devices.