Octopamine (OA) is an important neuroactive substance that modulates several physiological functions and behaviors of various invertebrate species. This biogenic monoamine, structurally related to noradrenaline, acts as a neurotransmitter, a neuromodulator, or a neurohormone in insects. The tyramine β-hydroxylase (TBH) catalyzes the last step in OA biosynthesis and thus plays a key role in the regulation of synthesis and secretion of OA in neurons. The aim of this study was to characterize TBH in the cockroach Periplaneta americana and to get a better understanding of its regulation under stress conditions in this insect. First of all, five full-length cDNAs encoding TBH isoforms were cloned from the nerve cord of the physiological model P. americana. PaTBH transcripts were found mainly expressed in nervous tissues and in octopaminergic dorsal unpaired median neurons. In addition, a new ELISA assay was developed so as to allow determination of both OA level and TBH activity in stressed cockroaches. Mechanical stressful stimulation led to a significant increase in TBH activity after 1 and 24 h, with a higher induction after 1 h than after 24 h. Thus, TBH could be considered as a promising biomarker of stress in insects rather than OA.