The contribution of air to ultrasonic friction reduction

  • Friesen Rebecca Fenton
  • Wiertlewski Michael
  • Peshkin Michael
  • Colgate J. Edward

COMM

— The origin of friction reduction on an ultrason-ically vibrating plate has been the subject of debate. Recent work suggests that friction may be reduced due to intermittent contact caused by bouncing upon the vibrating surface [8], leaving the question of whether other phenomena such as levitation on a squeeze film of air also play a role. To probe the contribution of squeeze film levitation, we investigated the dependence of the friction reduction effect upon air pressure. An artificial finger was placed inside a vacuum chamber, touching an ultrasonic friction reduction device composed of a glass plate vibrated by piezo-actuators. Friction between the finger and the glass was measured by rotating the finger with a motor, and measuring the motor's torque load. Decreased friction is signaled by decreased motor current. Compared to atmospheric pressure, a 98% vacuum inside the chamber was observed to markedly diminish the friction reduction effect, suggesting that squeeze film levitation does indeed play a substantial role in ultrasonic friction reduction.